Quantum Computing: Infn è l’unico partner non statunitense nel progetto da 115 miliardi di dollari coordinato dal Fermilab di Chicago e guidato dall’italiana Anna Grassellino
È di 115 milioni di dollari il finanziamento del Department of Energy (DOE) statunitense al Fermilab (Fermi National Accelerator Laboratory) di Chicago, il laboratorio selezionato per guidare uno dei cinque centri nazionali che, nell’ambito della National Quantum Initiative degli Stati Uniti, lavoreranno per portare progressi trasformativi nella scienza dell’informazione quantistica. L’annuncio è stato dato nei giorni scorsi, congiuntamente dalla Casa Bianca – Office of Science and Technology Policy, dalla NSF National Science Foundation e dal DOE.
Il finanziamento, che sarà erogato nell’arco di cinque anni, è destinato al nuovo centro di ricerca Superconducting Quantum Materials and Systems Center (SQMS), con sede al Fermilab e al quale partecipano 20 istituzioni, tra cui l’INFN Istituto Nazionale di Fisica Nucleare italiano, l’unico partner non statunitense del progetto. Guidato da Anna Grassellino, ricercatrice di origine italiana del Fermilab che ha iniziato la sua carriera all’INFN, SQMS avrà il compito di sviluppare un computer quantistico d’avanguardia con prestazioni mai raggiunte finora basato su tecnologie superconduttive. Il Centro svilupperà anche nuovi sensori quantistici con importanti applicazioni in fisica fondamentale, in particolare nella ricerca sulla materia oscura e altre particelle esotiche.
L’INFN riceverà un contributo da parte del DOE di circa 1,5 milioni di dollari, e contribuirà al progetto grazie al suo know-how competitivo a livello mondiale in fisica teorica, nelle tecnologie superconduttive e criogeniche e nello sviluppo di rivelatori. Grande importanza nell’ambito di SQMS riveste la realizzazione di una facility per misure, test e validazione di dispositivi quantistici ai Laboratori Nazionali del Gran Sasso dell’INFN, luogo unico al mondo per attività a bassissime radioattività ambientali e per le riconosciute competenze in ambito criogenico. Inoltre, l’impiego dei dispositivi quantistici realizzati da SQMS consentirà all’INFN di sviluppare rivelatori più sensibili per l’osservazione di particelle esotiche che potranno essere impiegati, per esempio, in esperimenti sulla materia oscura. Ci si aspetta che i risultati del progetto possano aprire la strada a studi teorici più accurati di fisica fondamentale e possano rivoluzionare le metodologie di analisi dei dati dei grandi esperimenti agli acceleratori. Inoltre, le impressionanti prestazioni di calcolo potranno fornire un contributo sostanziale anche in altri ambiti tecnico-scientifici, quali ad esempio la biologia e le biotecnologie.
“L’Istituto Nazionale di Fisica Nucleare italiano collabora con successo con il Fermilab da più di 40 anni ed è una grande soddisfazione per noi essere parte dello straordinario team SQMS”, sottolinea Antonio Zoccoli, presidente dell’INFN. “Grazie al suo elevato know-how scientifico e tecnologico, e tenendo conto del ruolo dei Laboratori Nazionali del Gran Sasso, il più grande laboratorio sotterraneo dedicato alla fisica astroparticellare e uno dei luoghi a più bassa radioattività al mondo, l’INFN come partner di questo progetto porterà il suo significativo contributo al progresso non solo della fisica fondamentale ma anche della scienza e della tecnologia quantistiche”, conclude Zoccoli.
“La collaborazione con il progetto SQMS apre un nuovo promettente filone di ricerca per i Laboratori del Gran Sasso, che hanno le potenzialità per diventare un centro di eccellenza in questo campo: l’eccezionalità dei laboratori sotterranei unita alle nostre competenze nella criogenia delle bassissime temperature e nella riduzione della radioattività ambientale ci pongono in una posizione privilegiata per lo sviluppo e il test di qubit con prestazioni senza precedenti”, spiega Carlo Bucci, ricercatore dell’INFN responsabile dell’esperimento criogenico CUORE dei Laboratori del Gran Sasso.
SQMS fa parte di un programma federale da 625 milioni di dollari che ha l’obiettivo di favorire e promuovere l’innovazione quantistica negli Stati Uniti. Il National Quantum Initiative Act del 2018 ha richiesto un impegno a lungo termine e su larga scala delle risorse scientifiche e tecnologiche statunitensi per la scienza quantistica.
“Il Fermilab è entusiasta di ospitare il Centro SQMS e di lavorare con questa eccezionale rete di collaboratori”, commenta Nigel Lockyer, direttore del Fermilab. “Questa iniziativa è in linea con la missione del nostro Laboratorio: ci aiuterà a rispondere a importanti domande sulla fisica delle particelle, e al contempo a contribuire ai progressi nella scienza dell’informazione quantistica, grazie alle nostre competenze e capacità nelle tecnologie degli acceleratori di particelle, come i dispositivi a radiofrequenza superconduttivi e la criogenia”.
La sfida del quantum computing. Al centro della corsa americana all’efficienza nel quantum computing, che ha un parallelo in Europa con la Quantum Flagship supportata da Horizon 2020 e Horizon Europe, c’è uno dei problemi oggi più importanti nella scienza della computazione quantistica: estendere il cosiddetto “tempo di coerenza”, cioè il tempo in cui un qubit (bit quantistico), mantiene inalterate le informazioni in esso contenute. Comprendere e mitigare le fonti che generano la “decoerenza” dei qubit è di fondamentale importanza per l’ingegneria dei futuri computer e sensori quantistici.
“Senza affrontare e superare il problema della decoerenza del sistema quantistico non siamo in grado di costruire computer quantistici che risolvano nuovi problemi complessi”, spiega Anna Grassellino, direttrice del centro SQMS del Fermilab. “Lo stesso – prosegue Grassellino – vale per i sensori quantistici, il cui spettro di sensibilità dovrà permetterci di affrontare questioni da tempo irrisolte in molti campi della scienza”. “Il superamento di questa limitazione cruciale avrà un grande impatto in diversi ambiti, dalle scienze della vita alla biologia, dalla medicina alla sicurezza, consentendo inoltre misure di incomparabile precisione e sensibilità nella scienza di base”, conclude la direttrice del Centro SQMS.
Le Istituzioni partner del Superconducting Quantum Materials and Systems Center sono: Ames Laboratory del DOE, Colorado School of Mines, Fermi National Accelerator Laboratory, Goldman Sachs, Illinois Institute of Technology, INFN Istituto Nazionale di Fisica Nucleare, Janis Research, Johns Hopkins University, Lockheed Martin, NASA Ames Research Center, National Institute of Standards and Technology, Northwestern University, Rigetti Computing, Stanford University, Temple University, Unitary Fund, University of Arizona, University of Colorado Boulder, University of Illinois-Urbana Champaign.
Quantum computing e fisica di base. La ricerca nell’ambito delle tecnologie quantistiche conta oggi sforzi di enorme portata in tutto il mondo. Oltre all’iniziativa americana, in parallelo si sta muovendo in Europa con obiettivi simili, la Quantum Flagship, supportata dalla EU nell’ambito di Horizon2020 e Horizon Europe. Al centro delle potenzialità rivoluzionarie del quantum computing, c’è il “qubit”, l’elemento base di un computer quantistico. Se un bit classico immagazzina un valore binario (0 oppure 1), un qubit, sfruttando le leggi della meccanica quantistica, può immagazzinare un’arbitraria sovrapposizione di stati di 0 e di 1. Le tecnologie sviluppate dalla fisica fondamentale per gli acceleratori possono essere utilizzate per realizzare nuovi tipi di qubit, capaci di conservare intatta l’informazione immagazzinata per tempi molto più lunghi di quanto sia possibile attualmente, consentendo così l’applicazione dei computer quantistici alla risoluzione di problemi estremamente complessi.
Il Fermilab e l’INFN. Il Fermi National Acceleratory Laboratory (Fermilab) è uno dei più importanti centri per la fisica delle particelle degli USA, supportato dal DOE. Al Fermilab, con cui l’Italia, attraverso l’INFN, ha sottoscritto numerosi accordi di ricerca, lavorano oltre 150 ricercatori italiani e collaborano importanti aziende italiane leader nelle tecnologie di frontiera. Attualmente al Fermilab i fisici italiani, presenti con ruoli di rilievo sin dagli anni ’80, sono impegnati in esperimenti che studiano i neutrini, con gli esperimenti NOvA, ICARUS e LBNF/DUNE, e i muoni con gli esperimenti Muon g-2 and Mu2e.
Nella foto la direttrice del Centro SQMS Anna Grassellino (a sinistra) si trova accanto all’esperimento Dark SRF con gli scienziati del Fermilab Roni Harnik (al centro) e Alex Romanenko (a destra). L’esperimento mira a scoprire la natura della materia oscura nel nostro universo. ©Reidar Hahn, Fermilab