Algoritmo individua la casa in base ai record telefonici


Uno studio scopre l’algoritmo migliore per individuare l’abitazione di una persona grazie al suo smartphone e ai record telefonici

Tumori: l’uso del cellulare non risulta associato all’incidenza di neoplasie nelle aree più esposte alle radiofrequenze secondo un nuovo studio dell'Iss

È possibile localizzare la posizione di un’abitazione attraverso l’analisi dei dati di telefonia mobile? L’Istituto di scienza e tecnologie dell’informazione del Consiglio nazionale delle ricerche (Cnr-Isti), l’Universidad del Desarrollo di Santiago del Cile, l’operatore Telefònica Chile, l’Università di Torino e la Fondazione ISI di Torino hanno validato per la prima volta un vasto insieme di algoritmi, già esistenti o sviluppati appositamente, sui record telefonici di 65 volontari a Santiago del Cile.

Lo studio, pubblicato su EPJ Data Science, ha consentito di identificare l’algoritmo più accurato, scoprendo che le telefonate nelle ore notturne identificano l’abitazione del portatore di numero con maggiore precisione e che per l’identificazione è sufficiente una frazione inferiore al 20% delle telefonate.

“Determinare l’abitazione di un individuo attraverso l’analisi dei suoi record telefonici è una sperimentazione che consente di aumentare la capacità di automatizzazione di processi statistici di grande rilevanza, come la stima e la previsione della densità di popolazione, dei flussi migratori, dell’inquinamento atmosferico e la costruzione di modelli matematici per previsioni epidemiologiche, anche rispetto alla diffusione di COVID-19”, spiega Luca Pappalardo del Cnr-Isti.

“Nonostante l’importanza di tale rilevamento, la mancanza dell’insieme di record telefonici associati all’area di residenza (dati ground truth), non consentiva di validare opportunamente i metodi attualmente usati, non eravamo quindi sicuri dell’accuratezza dei loro algoritmi. Il nostro studio getta finalmente luce sulla precisione di questi algoritmi, al tempo stesso consentendo di calcolare la minima quantità di dati necessaria per una determinato scopo di pubblico interesse”.

Chi: Cnr-Isti
Che cosa: Luca Pappalardo, Leo Ferres, Manuel Sacasa, Ciro Cattuto, Loreto Bravo, “Evaluation of Home Detection Algorithms on Mobile Phone Data Using Individual-Level Ground Truth”, EPJ Data Science, 2021. https://rdcu.be/clPbu, https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-021-00284-9